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Near-infrared reflectance (NIR) spectroscopy was used in the characterization of grain morphology

mutants of barley (Hordeum vulgare L.) in relation to grain nitrogen (N) content and protein

composition. Derivative spectroscopy provided spectra with enhanced resolution, allowing wave-

lengths to be identified with clear differences in contribution from associated chemical bonds.

Comparisons of fourth-derivative spectra of wholemeal flour from high-N grains with flour from low-N

grains identified wavelengths at which there were statistically significant differences between the

groups. Their importance was independently confirmed by step-up regression using these wave-

lengths to generate an equation predicting N content (R2 = 0.98). Fourth-derivative spectral

comparisons also allowed novel biochemical differences to be predicted. Visual assessment of

the spectra of all mutants revealed a variable region (1470-1520 nm, corresponding to N-H stretch

vibrations) that allowed two extreme sets to be defined. The protein extracted from these two sets

differed markedly in hordein content.
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INTRODUCTION

There have been two broad applications of NIR spectroscopic
data relevant to barley. The first involved the determination
of particular components of barley grains, for instance, β-glucans
(1, 2) and dietary fiber (3 ). The second application involved
comparisons between grains from normal and mutant barleys.
There is a large range ofmutations affecting endosperm composi-
tion (e.g., contents of particular amino acids, starch quality, and
quantity) that have been selected for use in breeding studies.
Munck et al. (4 ) compared NIR spectra from normal and lys3a
lines and, using principal component analysis (PCA), they were
able to differentiate between these genotypes. Chemical analysis
of these samples revealed differences between normal and lys3a
lines in amino acid composition, as well as in their contents
of β-glucan, starch, fat, and insoluble fiber. Visual inspection of a
specific region (2270-2360 nm) of representative NIR spectra
showed clear differences between genotypes, and in this region
there were spectral assignments for starch (O;H and C;C,
2276 nm), amino acids (N;H and CdO, 2294 nm), cellulose
(C;H, 2336 nm), and unsaturated fat (HCdCHCH2, 2347 nm).
Thus, the lys3a mutant, initially selected as having a high lysine
phenotype, also has pleiotropic effects on other grain components
which contribute to the physical and chemical phenotype that is
revealed by the NIR spectra.

Derivative spectroscopy is widely utilized in the analysis
of chemical and pharmaceutical compounds for the qualitative
and quantitative detection of the presence of specific components
(5, 6). It is also widely applied to enhance the resolution of
spectral data, and it is this latter aspect that is the focus of this
paper. In the analysis of NIR data, numerical second-order
differentiation is often utilized to remove the linear trend asso-
ciated with the changing particle size distribution from one
sample to the next of the same type of biological material. In
reality, when applied, it not only removes the linear trend but also
performs a resolution enhancement. Consequently, when similar
biological samples (e.g., different wheat varieties grown at differ-
ent locations, or mutant versus wild type grains) are compared,
the second-order differentiation plays an implicit derivative
spectroscopy role.

The focus of this paper is the potential for higher order
(e.g., fourth) derivative spectroscopy to assist with the analysis
and interpretation of NIR spectra of a new collection of barley
grain mutants, by virtue of its ability to enhance resolution. We
are aware of only a few earlier studies using this methodology
to compare similar biological samples, such as cereal grains, other
plant material, and foods. Gutierrez (7 ) used second derivatives
to quantify R- and β-acids in hops, and Scholz et al. (8 ) detected
changes in the size and distributionof polymeric proteins inwheat
using second derivatives coupledwith PCA.Wesley et al. (9 ) used
a combination of second derivatives and curve fitting to predict
gliadin and glutenin composition of wheat. Derivative spectro-
scopy has also been used for resolution enhancement of other

*Corresponding author (telephone +61 2 6246 5251; fax +61 2
6246 5255; e-mail Peter.Chandler@csiro.au).

J. Agric. Food Chem. 2009, 57, 4042–40504042
DOI:10.1021/jf9001523

Published 2009 by the American Chemical SocietyPublished on Web 4/15/2009pubs.acs.org/JAFC



spectroscopic techniques in the analysis of food products. Robert
et al. (10 ) used second derivatives of Fourier transform infrared
spectra to analyze cell wall components of wheat grains, whereas
Lüthi-Peng and Puhan (11 ) successfully used fourth-derivative
UV spectrophotometry to determine protein (and specifically
casein) content in milk.

In this paper, the emphasis is on the utility of derivative
spectroscopy in the extraction of molecular insight from
very similar NIR spectra (mutants with a common genetic back-
ground and grown in the same controlled environment). When
the NIR spectra are not that similar (for instance, mutants with
a range of genetic backgrounds and grown in different field
environments), other methodologies, such as PCA, have been
utilized. A detailed and informative discussion of such met-
hodologies can be found in Munck (12, 13). Many of the
calculations discussed below were obtained using WinISI II
software, which is based on the types of methodologies investi-
gated by Munck.

DERIVATIVE SPECTROSCOPY METHODOLOGY

Fromadata analysis perspective,modern computer-controlled
instruments, such as various spectroscopic devices, record ob-
servational data on a very fine (time and/or spatial) grid after
averaging a reasonably large number of replications to produce a
set of measurements with (very) small errors. This is true for all
types of spectroscopic data and NIR in particular, where 25 or
more scans have been automatically performed and then aver-
aged by the instrument, in order to give a highly accurate
measurement of the spectrum being scanned. This is why NIR
spectra of the same sample, after scatter correction, overlay each
other to graphical accuracy and better and are often treated as
being “exact” curves. This technology is being extended to
hyperspectral imaging applications, including its use in the
classification of cereal grains and foods (14-16).

It was the need to work with data defined on coarse grids that
spawned much of the earlier methodologies developed for the
statistical analysis and numerical differentiation of observational
data. Consequently, as a result of the mentioned major improve-
ments in computer-controlled spectrometers, the possibility of
obtaining accurate higher derivatives of the data has become a
reality.

A brief discussion about the different ways in which differ-
entiation can be performed computationally is given in the
Supporting Information.

From the perspective of this paper, as outlined in the Introduc-
tion, the key differentiation methodology is “derivative spectro-
scopy” (5 ). The advantages of derivative spectroscopy include the
following: for the first derivative, zero values precisely determine
the wavelengths at which peak maxima and minima occur in the
function being differentiated and, because the derivative of a
constant is zero, it removes the background constant; for the
second derivative, it performs a mild resolution enhancement,
zero values precisely determine the wavelengths at which peak
maxima and minima occur in the first derivative, and it removes
the background linear trend. There are similar advantages for the
third, fourth, and higher derivatives, each providing increasingly
enhanced resolution.

This enhancement is illustrated for the function

f ðxÞ ¼ sin x þ ε cos ωx 0exe4π;ω > 1 ð1Þ

where ε andω are indicative and illustrative constants for the type
of situation that occurs in analytical chemistry and NIR. For this

function, the first, second, and fourth derivatives are respectively
given by

f 0ðxÞ ¼ df ðxÞ
dx

¼ cos x-εω sin ωx ð2Þ

f 00ðxÞ ¼ d2f ðxÞ
dx2

¼ -sin x-εω2 cos ωx ð3Þ

and

f 0000ðxÞ ¼ d4f ðxÞ
dx4

¼ sin x þ εω4 cos ωx ð4Þ

In Figure 1a, the functions f(x), f0(x), and f0 0(x) are plotted for
ε = 0.0005 and ω = 13. The structure of these plots is directly
reflected in the algebra of f(x) and the corresponding derivatives.
The plot of f(x) agrees to graphical accuracy with sin x because
of the very small size of ε (0.0005). Although derivative spectro-
scopic enhancement is visible in f0 0(x), there is no such enhance-
ment in f0(x) because the size of εω is only 0.0005 � 13 =
0.0065 as opposed to the larger value of 0.0005 � 132 = 0.0845
for εω2.

The functions f(x), f0 0(x), and f0 00 0(x) are plotted in Figure 1b,
with ε now given the value of 0.00001 and ω= 13 as above. For
this much smaller value of ε, spectroscopic enhancement in f0 0(x)
is now not visible, whereas it is clearly visible in f0 00 0(x) because the
size of εω4 has become 0.00001 � 134. This illustrates why, in
some situations, it is necessary to go to the fourth derivative
before the utility of derivative spectroscopic enhancement is
realized. Clearly, if a signal contains no hidden higher frequency
component (i.e., ifω= 1 in eq 1), then no level of differentiation
will produce an enhancement of the type illustrated in Figure 1.

The order up to which an accurate numerical derivative can be
recovered is limited by the fineness of the grid, the accuracy with
which the data has been recorded, and the algorithm performing
the differentiation. From the perspective of this paper, it will be
shown that derivative spectroscopy using the fourth derivative
can be used to obtain a much clearer discrimination between
subtly different spectra.

Algorithms for Numerical Differentiation.For accurate data on
fine grids, suitably designed moving average techniques appear
to be the appropriate choice for numerical differentiation (17 ).
In WinISI II software, the numerical differentiation is
performed using this technique, where the parameters D, G,
and S1 (with S2 = 1) correspond, respectively, to the order
of the differentiation, the size of the gap (footprint) of the
moving average, and the subset of data points in the gap that
are averaged. Although the details about the weights that define
the moving average are not given, parsimony implies that
an equally weighted central difference formula is the likely
choice. The structure of such formulas and their numerical
performance are discussed in Anderssen et al. (17 ). All of the
numerical differentiation results given below were obtained
after experimentation with different values of the parameters
D, G, and S1.

MATERIALS AND METHODS

Plant Material. The barley (Hordeum vulgare L.) mutants were
isolated in the naked grain (huskless) variety ‘Himalaya’ following
mutagenesis with sodium azide as previously described (18 ). The treated
grains were sown in the field, bulk harvested, and then sown for one
further generation. A single well-formed head from each M2 plant was
harvested and threshed. The grains from each head were examined using
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a dissecting microscope, and an assessment wasmade as to whether (i) all
grains were abnormal in phenotype or (ii) there were at least several
grains within the head that showed a distinctive abnormal phenotype. In
either case, abnormal grains were sown for a further two successive
glasshouse generations, and any lines that failed to produce grains that
were different from wild type (WT) on a visual screen were discarded.
Approximately 150 grm (grain morphology) lines were selected from
3500M2 heads. The grains of the grmmutants differ from theWT in any
of numerous criteria, such as grain shape, grain size, degree of grain
filling, and surface characteristics (Figure 2). M6 grains were sown in a
soil/compost mix in a naturally lit glasshouse at temperatures of 17 �C
(day) and 9 �C (night), with a 16 h photoperiod. All lines were grown in
the same glasshouse at the same time to minimize the effects of
environmental differences. The majority of mutants in the collection
differed from wild type only in their grain morphology, although many
also had a reduced seed set. A minority of mutants was also affected in
one ormore vegetative traits, such as vigor, rate ofmaturity, plant height,
and tiller number.

Mature grains harvested from four plants of each line were ground
using a cyclone sample mill (Udy Analyzer Co.) to pass through a 1 mm
mesh.

NIR Spectroscopy. Wholemeal flour samples of 114 grm mutants
were analyzed by NIR spectroscopy using an NIRSystems 5000 (Foss
NIRSystems, Inc., Silver Spring, MD). Twenty-five scans were auto-
matically performed on each sample by rotation and the readings
averaged. Each mutant was reanalyzed once (25 scans) following
repacking of the sample, and the resulting spectra were averaged.
Readings were taken in the range of 1100-2500 at 2 nm intervals,
resulting in 700 data points per sample. The spectra were subjected to a
number of mathematical treatments using WinISI II software (Foss
NIRSystems, Inc.). Raw data were corrected for scatter resulting from
particle size differences using multiplicative scatter correction (MSC),
which removes the linear trend associated with particle size by comparing
all spectra to the mean “ideal” spectrum and then correcting each
spectrum so that they have the same scatter as the ideal (19 ). This results
in spectra that have the same overall appearance as the raw data. For
derivative spectroscopy, raw data were transformed with WinISI II
software using various values for the order of the differentiation, gap
width, and smoothing factor.

Determination of Nitrogen (N) and Protein Extraction. Total N
content of wholemeal flour from grmmutants was determined according
to the Dumas dry combustion method (20 ). Total protein was extracted
from wholemeal flour using SDS buffer according to the method of
Shewry et al. (21 ). SDS-PAGE was carried out on 10% Bis-Tris precast
gels (Bio-Rad, Sydney, Australia). Hordeins were extracted from whole-
meal flour by shaking 20 mg of wholemeal flour with a stainless steel ball
bearing at 30/s for 3.5 min in a 96-well Vibration Mill (Retsch GmbH,
Rheinische, Germany) in 0.5 mL of Milli-Q water, followed by centri-
fugation for 10 min at 5000g. The supernatant was removed and
discarded. Alcohol-soluble proteins (including the hordeins) were ex-
tracted by shaking the pellet (as above) in 0.5 mL of fresh 50% isopropyl
alcohol and 1% DTT. Protein concentration was determined according
to the Bradford assay (22 ).

Protein Sequencing by Mass Spectroscopy. Plugs of 1 mm3 from
protein bands of interest were taken fromCoomassie-stained gels using a
Pasteur pipet. Proteins were reduced with DTT, alkylated with acryla-
mide, and digested with sequencing grade trypsin (Promega, Sydney,
Australia). Peptides were extracted with trifluoroacetic acid and cleaned
up using C18 Zip Tips (Millipore, Sydney, Australia). Sequencing was
performed byMALDI-TOF-TOFmass spectrometry at the John Curtin
School of Medical Research, Australian National University, Canberra,
Australia.

RESULTS AND DISCUSSION

A forward and a reverse approach to spectral analysis are used
in this paper. First, spectra were divided into groups based on
known biochemical composition (N content), and the average
spectra of the groups were compared using derivative spectro-
scopy. Second, the spectra were divided into groups based on
differences in the visual appearance of individual fourth-deriva-
tive spectra, and these differences were used as a basis for
investigating the biological variation between the groups.

High and Low N Content. From the full set of NIR spectra for
the 114 barley mutants, subsets were selected on the basis of N
content. This allows averagedNIR spectra for the highN subset
to be compared with the low N subset. The 30 highest lines had

Figure 1. Plots of a function of x demonstrating the resolution-enhancing capacity of numerical differentiation. The function f(x) = sin x + ε cosωx, ε = 0.0005
andω = 13, is plotted in (a) along with its first and second derivatives. The same function, but with ε = 0.00001, is plotted in (b) along with its second and fourth
derivatives.
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N contents from 3.12 to 3.71%, and the 30 lowest ranged from
1.75 to 2.7%. The averages of the MSC-treated log 1/R NIR
spectra are plotted in Figure 3a. It can be seen from this figure
that, over the wavelength ranges of 2054-2235 and 1400-1500
nm, there appear to be differences between the averages. This
first region is highlighted in Figure 3b-d, which show, for the
wavelength range of 1900-2250 nm, the averages of the two
subsets of NIR spectra (Figure 3b) and the spectra for the highN
subset and the low N subset (Figures 3c,d). Although the
difference in the averages in Figure 3b is more pronounced than
in Figure 3a (from the different scaling), it remains difficult to
conclude that there is a clear difference in their biological
content and structure. This is especially so given the scatter in

peaks and troughs within each subset. To confirm the differ-
ences between the spectra of the two subsets, derivative spectro-
scopy, for the reasons outlined in the methodology, was utilized.

Figure 4 shows plots of the second-derivative spectra for the
high and lowN subsets, with Figure 4a showing the averages for
the full NIR spectral range and Figure 4b-d showing the
second-derivative counterparts of Figure 3b-d. Although the
second derivative has provided some resolution enhancement
and there are differences between the averages over the specific
wavelength range of interest (Figure 4b), there is still a lot of
variation around the peaks and troughs (Figures 4c,d). The
motivation for showing the second derivative is two-fold. First,
it provides an alternate method to MSC for the removal of the

Figure 2. Examples of some of the barley grain phenotypes observed in the mutant collection. Each pair of grains shows a dorsal (left) and ventral (right) view
of a different mutant. The WT Himalaya pair is top left.

Figure 3. MSC-treated NIR spectra, log(1/R), of wholemeal flour from barleymutants varying in N content: (a) average full spectra for high (red) and low (blue)
N subsets; (b) enlargement of boxed area in (a) of average spectra for 1900-2250 nm range of high (red) and low (blue) N subsets; (c, d) spectra for all
mutants (gray) and average spectra (yellow) for the high (c) and low (d) N subsets over the same range.
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linear trend associated with light scatter from particle size
differences between samples. Second, it plays a derivative
spectroscopic role. A comparison of second-derivative spectra
within the high and lowN subsets (Figures 4c,d) shows that some
spectra have a small offset which appears to be linear and, hence,
must correspond to a quadratic offset in the corresponding
original spectra, which have been differentiated twice. This
conclusion is consistent with the results of Martens et al. (23 ),
who concluded that the light scattering effect contains a quad-
ratic function of wavelength in addition to a linear component.
As this offset is not observed uniformly across all wavelengths,
this maymean that the coefficient of the quadratic term is itself a
function of wavelength.

On an inductive basis, having established the derivative
spectroscopic enhancement of second differentiation, it follows
that the fourth differentiation represents an analogous enhance-
ment of second differentiation and, thereby, an even greater
enhancement of the higher frequency components in the original
spectrum.

As shown in Figure 5, which displays the fourth-derivative
counterparts of the second derivatives of Figure 4, the degree of
variability between the spectra of each subset is reduced com-
pared to the second derivative, resulting from the removal of any
cubic and quadratic scattering effects. It can be seen that there is
a clear difference in the fourth derivatives of the averaged high
and lowN subsets. (That this represents a statistically significant
difference is demonstrated below.) The importance of this
difference is that it highlights the wavelengths at which a
significant biochemical difference occurs. The increased number
of peaks and troughs in the fourth derivative (Figure 5a),
compared with the MSC-treated spectra (Figure 3a), is indica-
tive of the resolution enhancement that derivative spectroscopy
can provide. To understand the biological differences that are
being observed, these wavelength positions were related to the

known chemical bonds that vibrate in response to an NIR
stimulus.

Thewavelengths in the spectral region identified inFigures 3-
5 are within the N-H combination region of the NIR spectrum,
which runs from 1960 to 2294 nm (24 ). Within this region there
are three bands associated with proteins, themajor nitrogen sink
in the barley grain, located at 1980, 2050, and 2180 nm (25 ).
These correspond to the amide II band combining with N-H
asymmetric and symmetric stretches (1980 and 2050 nm, respec-
tively), and the combination of two amide I bands and an amide
III band (2180 nm). Fox et al. (26 ) identified the same region as
being strongly correlated to grain protein in barley.

Figure 5a also shows that there are additional differences
between high and low N subsets at around 1400-1500 nm. This
region corresponds to the first overtone of the same fundamen-
tal N-H bond stretching vibrations that contributed to the
combination bands observed at 1980 and 2050 nm. The ob-
servation of spectral variation at different, harmonically related
overtones and combinations of N-H vibrations serves as
confirmation that the differences seen in the spectra are due to
differences in protein. Slight differences in the original spectra,
and in the second derivative, are also visible in this region
(Figures 3a and 4a).

Developing an equation to predict nitrogen content con-
firmed the relationship between the nitrogen content of the
mutants and the wavelengths of the peaks and troughs identified
by derivative spectroscopy. The equation was developed using
the step-up regression facility in the WinISI II software to
generate coefficients for user-defined wavelengths using the
spectra from all mutants in the collection and their associated
N values. The wavelengths selected were 1982, 2018, 2054, 2082,
and 2176 nm, corresponding to the peaks and troughs in
Figure 5b, where the difference between high and low nitrogen
was the greatest. This gave an equation that predicted N content

Figure 4. Second derivatives (gap width, 10; smoothing, 10) of NIR spectra of high and low N subsets: (a) average full spectra for high (red) and low (blue) N
subsets; (b) enlargement of boxed area in (a) of average spectra for 1950-2200 nm range of high (red) and low (blue) N subsets; (c, d) spectra for all mutants
(gray) and average spectra (yellow) for the high (c) and low (d) N subsets over the same range.
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with an R2 of 0.98 (SEP = 0.069) when tested against 24
independent mutants. The statistical significance of the differ-
ences at the selected wavelengths is shown in Figure 6, where the
fourth derivative of Figure 5b is replotted on a larger scale, along
with standard error bars. At the wavelengths where clear
differences are observed, there is a large gap between the
standard error bars of the two curves, indicating a significant
difference between the curves. The fourth derivative is identify-
ing statistically significant biochemical differences between the
high and low N subsets.

Derivative Spectroscopy and Hordein Content. In the previous
example, we demonstrated that derivative spectroscopy en-
hances spectra to a degree whereby classification into different
spectral subsets is possible using previously obtained biochem-
ical data as a starting point. In the following example, we
demonstrate that, without biochemical data, derivative spectro-
scopy can be used to group mutants purely on the basis of
differences in their spectra. These groupings can be used as a
basis for further investigation.

A visual inspection of the overlaid individual fourth-deriva-
tive spectra of all mutants revealed a region of the spectrum that
was variable between mutants which was not apparent in the
MSC-treated raw spectra (Figures 7a,b). The wavelength range
of 1470-1520 nm contains two spectral features: a broad,
asymmetric peak at 1482 nm and a symmetric, Gaussian-like
peak at 1498 nm. Mutants could be separated into three broad
classes on the basis of these peaks: those with a peak at 1482 nm
and a contribution from a peak at 1498 nm (shown in blue in
Figure 7d); those with a peak at 1498 nm and virtually no
contribution from 1482 nm (shown in red in Figure 7d); and an
intermediate situation with contributions from both wave-
lengths (the spectrum of the wild-type Himalaya is a member
of the intermediate class; shown in black in Figure 7d). This
visual separation into classes was only possible by using deri-
vative spectroscopy, as demonstrated in Figure 7. Panels a and b
of Figure 7 show the raw data treated with MSC and the fourth
derivative, respectively. There are no clear features that could be
used to separate the mutants in Figure 7a; however, in Figure 7b
the peaks at 1482 and 1498 nm identified above can be used to
separate the mutants into discrete classes. Examples of the two

outermost spectral phenotypes (colored in red and blue) are
replotted for MSC-treated raw spectra and for the fourth
derivative in panels c and d, respectively, of Figure 7, demon-
strating the clear separation when using derivative spectro-
scopy. Differences in the slopes of the curves between the two
classes are now visible in the raw spectra; however, this becomes
apparent only following the separation in classes using the
fourth-derivative spectra. Both peaks are annotated in the
WinISI II software as being associated with N-H bonds, with
1482 nm resulting from the first overtone of the N-H stretch
vibration in a peptide bond. The peak at 1498 nm is simply
annotated as resulting from the first overtone of anN-Hstretch
vibration, with no further specificity as to the environment of
the N-H bond. Between these two peaks, there are contribu-
tions from other N-H vibrations from amides, aromatic
amines, and urea.

The association of this regionwithN-Hstretching vibrations
suggests that the differences observed in the spectra result from
differences in the protein content or composition of themutants.
As there was no significant difference between the spectra of the
high and lowNmutants in this region (Figure 5a), it is concluded
that the differences observed in Figure 7d arose from altered
protein composition rather than content. To assess this, proteins
were extracted from the wholemeal flour of mutants from the
two classes shown in Figure 7b (i.e., those with the most
pronounced spectral phenotypes in the wavelength range of
1470-1520 nm) and were separated by SDS-PAGE (Figure 8).
The two classes of mutants had clearly distinguishable protein
profiles, with mutants within each of the two classes showing a
high degree of similarity to each other.Major differences appear
at regions commonly associated with the hordein proteins, with
lower levels of B-, C- and D-hordeins [approximately 30-50,
55-75, and 100 kDa, respectively (27 )] in the mutants with a
reduced peak height at 1498 nm than compared with the other
group of mutants. The reduction of hordein content was con-
firmed by extracting and quantifying the alcohol-soluble pro-
teins from these lines. All lines selected with a reduced peak at
1498 nm had hordein contents that were <50% of WT, with
some as low as 25% ofWT. These results are consistent with the
annotation of the peak as being associated with vibrations of the

Figure 5. Fourth derivatives (gap width, 10; smoothing, 10) of NIR spectra of high and low N subsets: (a) average full spectra for high (red) and low (blue) N
subsets; (b) enlargement of boxed area in (a) of average spectra for 1950-2250 nm range of high (red) and low (blue) N subsets; (c, d) spectra for all mutants
(gray) and average spectra (yellow) for the high (c) and low (d) N subsets over the same range.
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N-H bond, as the hordeins belong to the prolamin group of
proteins, which has a greater than average contribution of
nitrogen-rich glutamine residues. As the hordeins account for
between 35 and 50% of total grain protein, a reduction of these
proteins by at least 50% could be expected to have a resultant
effect on the NIR spectrum (see Note added in Proof).

The relationship between the hordein content of the mutants
and the spectral region identified by derivative spectroscopy was
confirmed using stepwise regression in the WinISI II software.
In contrast to the step-up regression used previously for N
content, here the software assesses all data points in the spectra
and selects wavelengths with the highest correlation to a

laboratory-measured property. The software selected 1496
nm, only 2 nm from the peak maximum in Figure 7d, as the
wavelength that correlatesmost strongly withmeasured hordein
content (F value of 41.7).

Mutants within the low hordein group often had increased
amounts of a polypeptide at 73 kDa. Sequencing of trypsin
digests of this polypeptide by MALDI-TOF mass spectrometry
identified the protein as barley embryo globulin 1 (BEG1),
which, despite its name, is also found in aleurone (28 ). It is
clear from two-dimensional gels (data not shown) that there are
many other non-hordein proteins that are also present at higher
contents in this group of mutants, indicating that there is some

Figure 6. Standard errors (black) of the fourth derivative of NIR spectra of high (red) and low (blue) N subsets for the wavelengths 1950-2250 nm. Error bars
are very small, frequently only slightly larger than the thickness of the curves.

Figure 7. Separation of mutants into classes using derivative spectroscopy: overlaid MSC-treated (a, c) and fourth-derivative (b, d) NIR spectra of all mutants
(a, b) andmutants selected on the basis of features at 1482 and 1496 nm in the fourth-derivative spectra (c, d). Spectra formembers of the two classes with the
most pronounced spectral features are shown in red and blue, and the spectrum for WT Himalaya is shown in black.
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compensation in protein composition that is occurring asso-
ciated with hordein deficiency. Several different classes of
transcription factor (bZIP, DOF, and R2R3MYB) have been
implicated in the synthesis of hordeins in developing endosperm
(29 ), so there may be a range of different genes and physiolo-
gical mechanisms responsible for the low and high hordein
phenotypes. Further characterization of the mutants is required
to define the mechanisms involved.

We have used derivative spectroscopy to compare grain
mutants with each other and with the wild type. The essence
of this methodology is the identification of wavelengths at which
nontrivial changes have occurred, from which knownmolecular
bonds can be identified. The resulting information, along with
independent biological information, forms the starting point for
drawing conclusions about grain properties of the mutants. In
particular, use of the fourth derivative has allowed barley
mutants to be spectrally distinguished on the basis of either
grain nitrogen content or high or low hordein content. These
differences will form the basis for NIR diagnostics to provide an
additional criterion for phenotypically grouping mutants and to
ultimately predict the grain composition of individual mutants
with unknown biochemical makeup.

ABBREVIATIONS USED

DTT, dithiothreitol; grm, grain morphology; MALDI-TOF,
matrix-assisted laser desorption/ionization time-of-flight; MSC,
multiplicative scatter correction; N, nitrogen; NIR, near-infrared
reflectance; PCA, principal component analysis; R, reflectance;
SDS-PAGE, sodiumdodecyl sulfate-polyacrylamide gel electro-
phoresis; SEP, standard error of prediction; UV, ultraviolet;WT,
wild type.
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NOTE ADDED IN PROOF

Confirmation that the spectral differences observed at 1498 nm
were due to altered hordein content was provided by spiking the
flour of a low-hordein mutant with purified hordein. This
increased the intensity of the peak at 1498 nm in the fourth
derivative spectrum so that it resembled the spectra of the high-
hordein mutants (data not shown).
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